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SUMMARY

A new method is presented for the simulation of two-dimensional, incompressible, free surface ¯uid ¯ow
problems. The surface marker and micro cell (SMMC) method is capable of simulating transient free surface
¯uid ¯ow problems that include multivalued free surfaces, impact of free surfaces with solid obstacles and
converging ¯uid fronts (including wave breaking). New approaches are presented for the advection of the free
surface, the calculation of the tentative velocity, ®nal velocity and pressure ®elds and the use of multivalued
velocities to treat converging ¯uid fronts. Simulation results are compared with experimental results for water
sloshing in a tank to demonstrate the validity of the new method. Convergence of the new method is
demonstrated by a grid re®nement study. # 1997 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 749±778 (1997).

No. of Figures: 14. No. of Tables: 1. No. of References: 9.

KEY WORDS: surface marker; micro cell method

1. INTRODUCTION

The numerical simulation of unsteady, incompressible, free surface ¯uid ¯ow problems is particularly

challenging because the location of the free boundary is not known a priori and the temporal

evolution of the ¯uid pressure is not directly described by the governing equations of continuity and

momentum. Hence any solution procedure for free surface ¯uid ¯ow problems must include a method

for locating and advancing the free surface as well as for treating the free surface boundary conditions

for velocity and pressure. In fact, the capability of any solution procedure is determined to a very

signi®cant extent by the method employed for the numerical treatment of the free surface.

Additionally, pressure variations within the ¯uid ®eld play a crucial role in the time evolution of the

¯ow ®eld, especially when relatively rapid changes occur as in the case of impact. Consequently, the

solution procedure must not only be capable of calculating the pressure ®eld accurately but must also

make provisions to deal with the occurrence of impact, whether between a ¯uid front and a solid

obstacle or between parts of the ¯uid front itself.

The ®rst method to address the challenges associated with the simulation of free surface ¯uid ¯ow

was the marker and cell (MAC) method, which was published in 1965 by Harlow and Welch1 and
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Welch et al.2 They introduced massless markers that move with the ¯uid and a novel ®nite difference

solution algorithm for the velocity ®eld. The new method described in this paper is, like the MAC

method, a ®nite difference method that employs massless markers to track the movement of the ¯uid.

The new method is therefore a marker and cell method, but it otherwise differs from the MAC

method in essentially every signi®cance respect.

Surface markers,3 rather than markers distributed throughout the ¯uid, are used in the SMMC

method. New procedures also are used to insure that only physically meaningful velocity information

is used to move the surface markers and advect the free surface. Physically motivated new procedures

to carefully approximate momentum ¯uxes, as opposed to straightforward use of ®nite difference

approximations of terms in the Navier±Stokes equations, are used for the calculation of the tentative

internal velocity ®eld. To avoid the physically unrealistic use in previous methods of the continuity

equation to calculate tentative surface velocities, as well as the resulting inconsistency between the

treatments of pressure and continuity in surface and full cells, a new approach also is used for the

determination of tentative surface velocities.

In connection with converging ¯uid fronts, new procedures that incorporate multivalued velocities

insure the use of physically relevant information in the calculation of the velocity and pressure ®elds.

In order to appreciate the new procedures for the assignment of appropriate values at different stages

in the computational cycle to velocities between converging ¯uid fronts, it is important to understand

that velocities are required in the simulation for three different purposes. First, the ®nal internal

velocities from the previous cycle and appropriate velocity boundary conditions are required for

marker movement in the current cycle. Second, the ®nal internal velocities from the previous cycle

and appropriate velocity boundary conditions are also required for the calculation of the tentative

internal velocities in the current cycle. Third, the tentative internal velocities and appropriate velocity

boundary conditions are required for the calculation of the incompressibility deviations, which

provide the forcing terms in the pressure Poisson equation.

In order to assign appropriate values at different points in the computational cycle to velocities

between converging ¯uid fronts, it is necessary to take into account the physical purpose for which

the velocity is intended. For the same velocity one value may be appropriate for a given purpose but

inappropriate for a different purpose.

In the SMMC method the assignment of free surface velocity boundary conditions in conjunction

with marker movement is governed by mass conservation considerations. During marker movement

the ®nal velocity ®eld from the previous cycle, for which the discrete continuity equation is satis®ed

in each cell, is used to advance the free surface in such a way that ¯uid is neither gained nor lost.

On the other hand, the appropriate transfer of momentum is the primary consideration in the

calculation of the tentative velocities in the current cycle. Mass conservation is not the primary

consideration, because the tentative velocity ®eld will not, in general, satisfy continuity. Finally,

for the calculation of the incompressibility deviation for each cell and the subsequent calculation

of the pressure ®eld the primary concern is the development of a physically appropriate pressure

®eld.

The details of the SMMC method are presented in Sections 2±8. First the numerical algorithm and

the computational domain of macro and micro cells4 are described in Section 2. Then the physical

justi®cation for and details of new procedures for the evolution of the free surface, for the calculation

of tentative velocities, for the assignment of velocities associated with new ¯uid cells, for the

treatment of pressure boundary conditions, for the calculation of ®nal velocities and for the use of

multivalued velocities to treat converging ¯uid fronts are described in Sections 3±8 respectively.

Simulation and experimental results for water sloshing in a tank are compared in Section 9 to

demonstrate the validity of the SMMC method. A grid re®nement study is presented in Section 10 to

demonstrate convergence. Conclusions are stated in Section 11.
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2. THE COMPUTATIONAL FRAMEWORK

The SMMC computational cycle is outlined in Figure 1, where x and y are Cartesian co-ordinates, t is

the time, u and v are the x-and the y-component of velocity respectively, uÄ and vÄ are the tentative

internal velocities, n is the kinematic viscosity, r is the density, gx and gy are the components of the

acceleration of gravity and p is the pressure. The tentative velocity equations, the incompressible

deviation function D, the pressure Poisson equation and the ®nal velocity equations are all shown in

Figure 1.

The SMMC computational domain is comprised of macro computational and boundary cells.

Micro cells are selectively superimposed on the macro cells in order to obtain a better de®nition of

the location of the free surface than can be achieved by the use of macro cells alone. The micro cells

are created by subdividing each macro cell into N6N micro cells, where N is an odd integer chosen

by the analyst. At any given time during a simulation, only micro cells near the free surface are

involved in the computations. Surface markers are used to track the movement of the free surface,

Figure 1. SMMC computational cycle
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while surface micro cells are used to de®ne the location of the free surface for the application of free

surface pressure boundary conditions.

As shown in Figure 2 for a typical macro cell (i, j) of dimensions dx and dy, the staggered grid

concept is used to locate the discrete ®eld variables and functions of those variables. The pressure

p(i, j) and the incompressibility deviation function D(i, j) are located at the centre of the cell, the

discrete velocities u(i, j) and u(i7 1, j) are located at the middle points of the right and left faces

respectively and the discrete velocities v(i, j) and v(i, j7 1) are located at the middle points of the top

and bottom faces respectively.

Cells are ¯agged to indicate the presence of ¯uid. A macro or micro cell that contains any amount

of ¯uid is called a ¯uid cell and is ¯agged as either surface or full. The ¯ag of a ¯uid macro cell is

based on the condition of its macro cell neighbours, while the ¯ag of a ¯uid micro cell is based on the

condition of its micro cell neighbours. Otherwise, the de®nitions of the ¯ags of macro and micro cells

are identical. A surface cell is a ¯uid cell that contains a surface marker and has at least one empty

neighbour, while a full cell is de®ned as a ¯uid cell that has no empty neighbours. Near the free

surface it is possible for a macro cell that contains surface markers to be ¯agged as a full macro cell.

Otherwise, full cells do not contain markers.

The ®rst step in the SMMC computational cycle is the movement of markers. Next the tentative

internal velocities at t0� dt are calculated. An internal velocity is a velocity between ¯uid cells. Both

marker movement and the calculation of tentative velocities are based on information available at the

conclusion of the previous cycle, namely on the cell ¯ags at t0, the internal velocity ®eld at t0 and the

boundary velocities at t0. The tentative surface velocities in the new computational cycle are assigned

immediately following the calculation of the tentative internal velocities. A surface velocity is a velocity

between a surface cell and an empty cell. Re¯agging occurs only after the determination of the complete

tentative velocity ®eld. During re¯agging, impact is identi®ed. After re¯agging, values are assigned for

new ¯uid cell velocities as required. At this point the ¯uid con®guration at t0� dt is set and tentative

velocities at t0� dt are known. The in¯uence of pressure on the change in the velocities has until this

point not been computed. Now the tentative velocities uÄ and vÄ are used to compute the incompressibility

deviation D and the pressure Poisson equation is solved. The pressure and tentative velocities are then

used to calculate the ®nal internal velocities. The last step is the assignment of the ®nal surface velocities.

At the end of the computational cycle the values of all relevant quantitiesÐthe marker positions, the cell

¯ags, the internal velocities, the surface velocities and the pressureÐare known at time t0� dt.

3. FREE SURFACE ADVECTION

The evolution of the ¯uid free surface is accomplished by moving the surface markers to new

locations according to

xn�1
k � xn

k � ukdt; yn�1
k � yn

k � vkdt; �1�

Figure 2. Staggered grid and discrete variables for cell (i, j)
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where the superscripts n and n� 1 represent time levels and the subscript k represents the marker

number. The marker velocity components uk and vk are computed by use of an area-weighting

scheme. For the marker k shown in Figure 3, the explicit expressions for uk and vk are

uk �
A1u1 � A2u2 � A3u3 � A4u4

dxdy
; vk �

A5v1 � A6v2 � A7v3 � A8v4

dxdy
; �2�

where the local velocities u1, u2, u3, u4, v1, v2, v3 and v4 are ®nal velocities from the preceding

computational cycle and A1 to A8 are associated weighting areas.

Equations (1) and (2) were ®rst proposed in the original MAC method for use in the movement of

markers distributed throughout the ¯uid. The same equations are used in the SMMC method for the

movement of surface markers. When free surfaces converge, however, special care must be exercised

in choosing physically appropriate local velocities for use in (2). Otherwise, grossly incorrect results

for the movement of the free surfaces can be obtained. In the following, typical situations associated

with the approach of free surfaces toward each other are identi®ed and new techniques used in the

SMMC method to treat them are presented.

Three typical situations that occur when free surfaces approach each other are shown in Figure 4.

At some point during the approach of two free surfaces toward each other, the two free surfaces will

be separated by a single empty macro cell as shown in Figure 4(a). According to the area-weighting

scheme expressed in (2), the outside tangential velocity vi; jÿ1 shown in Figure 4(a) is a local velocity

that is required for the estimation of the y-direction velocity components of both the marker k

associated with the free surface on the left and the marker m associated with the free surface on the

right.

In previous methods a value is assigned to each outside tangential velocity prior to marker

movement and that value is simply used as required for the movement of markers. In general,

however, a single value of an outside tangential velocity such as vi; jÿ1 can be meaningful for only one

of the free surfaces or the other in a situation such as the one shown in Figure 4(a). As a consequence,

if the same value vi; jÿ1 is used to determine the velocities of markers associated with both of the free

surfaces, the movement of one of the two surfaces will be distorted, since its movement will be

in¯uenced by an unrelated velocity. In addition, the convergence of the free surfaces will be retarded.

In order to avoid the distortion referred to above, a particular velocity such as vi; jÿ1 in Figure 4(a)

is a double-valued in the SMMC method. When the movement of a marker such as k that is associated

with the ¯uid on the left in Figure 4(a) is under consideration, vi; jÿ1 is treated as an outside tangential

velocity of the ¯uid on the left and is assigned the value of viÿ1; jÿ1 (see Reference 5 for a discussion

of the assignment of outside tangential velocities). However, when a marker such as m that is

Figure 3. Area-weighting scheme for marker movement
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associated with the ¯uid on the right in Figure 4(a) is under consideration, vi; jÿ1 is treated as an

outside tangential velocity of the ¯uid on the right and is assigned the value of vi�1; jÿ1. Since, unlike

in previous methods, outside tangential velocities are not stored in the SMMC method, it does not

matter whether marker k is moved before or after marker m. The velocity vi; j in Figure 4(a) is also

double-valued in the SMMC method. Since a local velocity such as vi; j or vi; jÿ1, which at the same

instant is an outside tangential velocity associated with two different ¯uid fronts, is evaluated

accurately in the SMMC method when the movement of either ¯uid front is under consideration, the

undesired distortion introduced in one of the ¯uid fronts by use of previous methods is eliminated.

As the two free surfaces shown in Figure 4(a) continue to approach each other, additional

dif®culties associated with marker movement emerge. At some point the two free surfaces will have

moved into adjacent macro cells as shown in Figure 4(b). For the situation shown in Figure 4(b), the

velocity ui; j is an internal velocity, since cells (i, j) and (i� 1, j) both contain ¯uid. Although ui; j

Figure 4. Multivalued velocities employed to move markers
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technically is an internal velocity which was assigned a ®nal value at the end of the last

computational cycle, the ¯uid fronts located in cells (i, j) and (i� 1, j) have not yet come into contact

with each other and ui; j is actually located between the two fronts. Therefore the internal velocity ui; j

also is one of the local velocities that is required for the estimation of the x-direction velocity

components of both the marker k associated with the free surface on the left and the marker m

associated with the free surface on the right. In order to properly accommodate these three different

uses, the velocity ui; j shown in Figure 4(b) is triple-valued in the SMMC method.

When the movement of marker k in Figure 4(b) is under consideration, the ¯uid on the right is

temporarily ignored and ui; j is treated as a surface velocity of cell (i, j). That is, ui; j is calculated by

use of the discrete approximation of the continuity equation associated with cell (i, j). On the other

hand, when the movement of marker m is under consideration, the ¯uid on the left is temporarily

ignored and ui; j is treated instead as a surface velocity of cell (i� 1, j). Neither of these values of ui; j

that is used for marker movement is stored. The stored value of ui; j is the ®nal value that was assigned

in the last computational cycle and that contains velocity information from both of the converging

¯uid fronts. If convergence of the two ¯uid fronts occurs in the current cycle, this stored value of ui; j

is used to calculate incompressibility deviations that allow the determination of the pressures in cells

(i, j) and (i� 1, j). A thorough discussion of this special case is found in Section 7.

Single values also do not suf®ce for the velocities vi; j, vi�1; j, vi; jÿ1 and vi�1; jÿ1 shown in Figure

4(b). For example, vi; j is an outside tangential velocity for the ¯uid on the right but is at the same time

an internal velocity for the ¯uid on the left. Similar statements apply with respect to velocities vi�1; j,

vi; jÿ1 and vi�1; jÿ1.

As two free surfaces continue to approach each other, they eventually occupy the same macro cell.

In the SMMC method, as long as one empty micro cell exists between the converging ¯uid fronts, the

motion of one front does not affect the motion of the other. It is possible, as shown in Figure 4(c), for

an empty micro cell to exist between two free surfaces found in the same macro cell. The philosophy

associated with the calculation of the x-direction velocities uk and um of markers k and m in Figure

4(c) is the same as that associated with the calculation of the velocities of markers on the converging

free surfaces shown in Figures 4(a) and 4(b). Speci®cally, when marker k in Figure 4(c) is under

consideration, the ¯uid on the right is ignored, uiÿ1; j is treated as an internal velocity of the ¯uid on

the left, vi; j and vi; jÿ1 are assigned as outside tangential velocities of the ¯uid on the left and ui; j is

assigned as a surface velocity. On the other hand, when marker m is under consideration, the ¯uid on

the left is ignored, ui; j is treated as an internal velocity of the ¯uid on the right, vi; j and vi; jÿ1 are

assigned as outside tangential velocities of the ¯uid on the right and uiÿ1; j is assigned as a surface

velocity.

In the SMMC method, velocities that serve different purposes in connection with the convergence

of two ¯uid fronts are multivalued. The use of multivalued velocities eliminates the distortion caused

by the inappropriate use of a single value for certain local velocities that in¯uence the movement of

two different ¯uid fronts. The value used for each local velocity required for the computation of the

velocity of a surface marker is always appropriate for the ¯uid front under consideration.

4. TENTATIVE VELOCITIES

In each computational cycle, tentative velocities are either calculated by use of the simpli®ed Navier±

Stokes equations in which the pressure terms have been neglected, or assigned by use of the best

available velocity information. Different procedures are required for internal as opposed to surface

velocities. The appropriate transfer of momentum is the primary physical consideration for the

calculation of a tentative internal velocity. The details of physically motivated new procedures to

calculate momentum ¯uxes are presented in this section. It is observed that the use of standard ®nite

THE SMMC METHOD 755

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 749±778 (1997)



difference approximations can lead to physically erroneous momentum ¯ux values in certain

situations. Momentum transfer considerations cannot be used, however, for the determination of a

tentative surface velocity, since the associated control volume is not even within the ¯uid. In previous

methods the continuity equation has been applied to the surface cells to compute the surface

velocities, in spite of the fact that the surface cells are not full and that the continuity equation may

not be satis®ed in any other cells at this stage of the computational cycle. An entirely new approach

based on the use of physically relevant neighbouring acceleration information is used in the SMMC

method for the computation of tentative surface velocities.

When standard ®nite difference approximations are used either of the simpli®ed Navier±Stokes

equations or of the pressure Poisson equation, it is implicity assumed that the control volume

associated with each velocity or pressure is full of ¯uid. The control volumes for the computations of

the tentative velocities ui; j and vi; j and of the pressure pi; j are shown in Figure 5. For a control

volume that lies entirely within the ¯uid-®lled region, the assumption that the control volume is full

of ¯uid is valid. In general, however, this assumption is not valid for a control volume near the free

surface. In particular, when free surfaces converge, the control volumes associated with some of the

internal velocities in the neighbourhood of the free surface may even be almost entirely empty.

A typical situation associated with converging free surfaces is shown in Figure 6. For the

con®guration shown in Figure 6, cell (i� 1, j) is the only empty macro cell, cells (i� 2, j),

(i� 1, j� 1), (i, j) and (i� 1, j7 1) are surface cells and all the other macro cells are full. Referring

to Figure 6, none of the control volumes associated with the 14 internal velocities ui�2; j�1, ui�1; j�1,

ui; j�1, uiÿ1; j, uiÿ1; jÿ1, ui; jÿ1, ui�1; jÿ1, ui�2; j, vi�2; j�1, vi�1; j�1, vi; j, vi; jÿ1, vi�2; jÿ1 and vi�2; j is full of

¯uid. The extreme cases are vi�1; j�1 and vi�2; j. The control volume associated with vi�1; j�1 is almost

completely full, while the control volume associated with vi�2; j is almost completely empty. The

amounts of ¯uid contained in the control volumes associated with the other 12 velocities that have

been identi®ed are between these extremes. In the new method, special treatments are employed to

determine appropriate values of the tentative velocities associated with cells near the free surface.

The new procedures presented in the remainder of this section enable the successful simulation of

free surface ¯uid ¯ow problems that include converging ¯uid fronts. Five new procedures are

discussed separately. Micro cells play an essential role in the implementation of these procedures.

First, the procedure used to determine whether a tentative value for a given internal velocity will be

calculated by use of the simpli®ed Navier±Stokes equations or, instead, will be assigned is discussed

in Section 4.1. Second, the general approach used for the calculation of tentative internal velocities is

explained in Section 4.2. Third, the special procedures required for calculating tentative velocities

associated with converging ¯uid fronts are presented in Section 4.3. Fourth, the procedures used in

certain special situations to assign tentative internal velocities by use of the best available information

are described in Section 4.4. Fifth, new procedures for the determination of tentative surface

velocities are presented in Section 4.5.

4.1. Decision to calculate a tentative internal velocity

In previous methods the simpli®ed Navier±Stokes equations are used to calculate a tentative value

for each internal velocity, i.e. for each velocity associated with a face that is shared by two macro

cells that contain ¯uid. In the new method, however, the simpli®ed Navier±Stokes equations are not

used to calculate values for certain internal velocities. Consequently, for a particular internal velocity

the ®rst step is to make a decision whether or not to calculate a tentative value by use of the simpli®ed

Navier±Stokes equations. If the internal velocity in question is located outside the ¯uid, no tentative

velocity is calculated. Instead, tentative values for such internal velocities are assigned by use of the

most physically meaningful information as described in Section 4.4.
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Associated with each macro cell that contains ¯uid are neighbouring points e, n, w and s located to

the east, north, west and south respectively of the centre of the cell. Each of these points is either the

centre of an adjacent macro cell or the centre of a surface micro cell. The distances between the

centre of the macro cell under consideration and points e, n, w and s are designated le, ln, lw and ls

respectively and are referred to as leg lengths. If the centre micro cell of a given macro cell is not full,

then all four leg lengths are equal to zero for that macro cell. At the other extreme, le� lw� dx and

ln� ls� dy if the macro cell under consideration is full and all four of its macro cell neighbours are

also full. If a ¯uid free surface exists between the centre of the macro cell and the centre of one of its

neighbours, then le, lw, ln or ls may be as small as zero or as large as dx or dy, depending on the

location of the free surface. Micro cells enable the ef®cient determination of leg lengths and leg

length information enables the straightforward identi®cation of internal velocities that lie outside the

¯uid.

Referring to Figure 6, vi; jÿ1 and vi�2; j both are internal velocities, since each velocity is located on

a face shared by a surface cell and a full cell. That both of them are also located outside the ¯uid is

Figure 5. Control volumes
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determined by examination of leg length values. For example, since lsi; j and lni; jÿ1 are both less than

dy=2 (in this case, lsi; j � 0 and lni; jÿ1 � dy=3), vi; jÿ1 lies outside the ¯uid. Furthermore, since

lsi�2; j�1 � lni�2; j � 0, vi�2; j also lies outside the ¯uid. Consequently, no tentative value is calculated

for either of these two velocities.

4.2. General procedure for calculation of tentative internal velocities

By use of the Gauss theorem the integrated value of the momentum ¯ux terms in the Navier±

Stokes equations over the control volume can be converted to the value of the momentum ¯ux across

the boundary of the control volume. In general, the calculation of tentative internal velocities in the

new method is accomplished by making use of the best available information in a particular situation

to carefully approximate the momentum ¯ux across each face of the appropriate control volume, as

opposed to the straightforward use of standard ®nite difference approximations of the terms in the

simpli®ed Navier±Stokes equations. Consequently, the ¯ux leaving one control volume is

automatically gained by the adjacent control volume and momentum conservation is guaranteed.

Even when the region surrounding the tentative velocity in question is completely ®lled with ¯uid,

there is a difference between the use of the new method and the use of standard ®nite difference

approximations. If, as discussed below, the velocities on opposite faces of a given control volume

happen to have opposite signs, the difference is signi®cant. In such a case an incorrect rate of

momentum transfer across the faces of the control volume is associated with the use of a standard

®nite difference approximation. In other cases involving full control volumes, the new

approximations are identical with second-order central difference approximations.

The continuous form of the simpli®ed Navier±Stokes equation that governs the tentative

acceleration @~u=@t can be written as

@~u

@t
� ÿ @u

2

@x
ÿ @uv

@y
� n

@2u

@x2
� @

2u

@y2

� �
� gx �3�

Figure 6. Internal velocities near free surface
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and the tentative velocity uÄ is calculated according to

~u � u� dt
@~u

@t
: �4�

Similar equations are used to calculate the tentative acceleration @~v=@t and the tentative velocity vÄ.

The procedures for approximating the ®rst two terms on the right-hand side of (3) will be discussed in

detail.

For a particular discrete internal velocity ui; j a tentative value ~ui; j is calculated by use of (3) and (4)

provided that either lei; j or lwi�1; j is larger than dx=2, which insures that ui; j is inside the ¯uid region.

Otherwise, a tentative value is assigned as described in Section 4.4.

The rate of x-momentum increase (per unit mass) in the control volume as a result of convection

across the vertical faces, ÿ@u2=@x, is calculated by use of the equation

ÿ @u
2

@x
� TL ÿ TR

dx
; �5�

where TL=dx and TR=dx represent the rates of x-momentum transfer across the left and right faces of

the control volume respectively. As shown in Figure 5(b), the left and right faces of the control

volume are vertical lines passing through the centres of cells (i, j) and (i� 1, j) respectively. The

problem now is to approximate the rate of x-momentum transfer. Since the calculation of TR is similar

to that of TL, only the calculation of TL is described in detail.

The value of TL is estimated by use of

T � max�ULUDL; 0�; �6�
where UL is the average velocity in the x-direction at the left control face and UDL is the average

velocity in the x-direction of the ¯uid in the donor control volume. Since the x-momentum transfer

across the left face of the control volume is always positive, TL cannot be less than zero. Across the

left face, either negative x-momentum is leaving the control volume or positive x-momentum is

entering. In either case the x-momentum associated with the control volume is increased by the

momentum transfer across its left face. The approximation for UL is simply given by

UL �
uiÿ1; j � ui; j

2

and the sign of UL determines the donor control volume and therefore the appropriate value for UDL.

If UL is positive, the ¯uid is ¯owing from left to right and

UDL � uiÿ1; j:

Otherwise, the ¯uid is ¯owing from right to left, in which case

UDL � ui; j:

This ef®cient new procedure makes use of the best available information to provide an estimate of the

increase in x-momentum in the control volume as a result of convection across the vertical faces.

Miyata6 and Nichols7 discuss different ®nite difference approximations of @u2=@x. The upstream

®nite difference approximation employed by Hirt and Nichols in their volume of ¯uid method is

similar to the new method presented here, but there is one important difference. In the new method

presented here, care is taken to insure that a negative value is never calculated for the rate of

momentum transfer across the left face of the control volume. Consequently, TL is set equal to zero if

ULUDL is negative, which is the case only when ui, j> 0 and ui71, j< 0. As a result, a physically

incorrect approximation of momentum transfer is avoided in such situations, which can occur even in

a region that is completely ®lled with ¯uid. Focusing attention on the momentum transfer across the
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faces of the control volume rather than on the form of the ®nite difference approximation of @u2=@x
led to this improvement.

The rate of increase in x-momentum as a result of convection across the horizontal faces of the

control volume, which corresponds to the term ÿ@uv=@y, is calculated by use of the equation

ÿ @uv

@y
� TB ÿ TT

dy
; �7�

where TB=dy and TT=dy represent the rates of x-momentum transfer across the bottom and top faces

of the control volume respectively. As shown in Figure 5(b), the bottom and top faces of the control

volume are coincident with the horizontal grid lines j7 1 and j respectively. Since the calculation of

TT is similar to that of TB, only the calculation of TB is described in detail.

The value of TB is estimated by use of

TB �
VBLUDBL � VBRUDBR

2
; �8�

where VBL � vi; jÿ1 and VBR � vi�1; jÿ1 represent the average velocities in the y-direction along the

left and right halves of the bottom face of the control volume for ui; j respectively and UDBL and UDBR

represent the average velocities in the x-direction in the appropriate donor control volumes for the left

and right halves of the bottom face respectively. The details of the evaluation of VBLUDBL are

presented below; VBRUDBR is evaluated in a similar manner.

When either lsi; j or lni; jÿ1 is larger than dy=2, the left half of the bottom face of the control volume

is immersed in ¯uid and VBLUDBL is determined as follows. If VBL is positive, the ¯uid is moving

upwards across the left half of the bottom control face, the donor control volume is the control

volume associated with ui; jÿ1 and therefore UDBL � ui; jÿ1. On the other hand, if VBL is negative, the

¯uid is moving downwards; the donor control volume is the control volume associated with ui; j and

therefore UDBL � ui; j. If VBL is zero, it is not necessary to determine UDBL, since the product of VBL

and UDBL is zero regardless of the value of UDBL.

In certain situations no bene®t is obtained by considering the left and right halves of the bottom

face of the control volume separately. For example, if lsi; j and lsi�1; j are both larger than dy=2 and

furthermore, vi; jÿ1 and vi�1; jÿ1 are both positive, then, by use of (8), TB can be written as

TB �
vi; jÿ1 � vi�1; jÿ1

2
ui; jÿ1;

since UDBL � UDBR � ui; jÿ1. This same result obviously can be obtained in a very straightforward

manner simply by multiplying the average value of the vertical velocity on the bottom face of the

control volume by the horizontal velocity of the donor control volume.

In other situations, however, it is very important to treat the left and right sides of the bottom face

of the control volume independently. For example, if vi; jÿ1 is negative and vi�1; jÿ1 � ÿvi; jÿ1, then

the value of TB calculated by use of (8) can be written as

TB �
vi; jÿ1ui; j � vi�1; jÿ1ui; jÿ1

2
� 1

2
vi; jÿ1�ui; j ÿ ui; jÿ1�;

which will result in a zero value of TB only if ui; j � ui; jÿ1. On the other hand, since the average

vertical velocity on the bottom face is zero when vi; jÿ1 and vi�1; jÿ1 are equal and opposite, the

approach of multiplying the average value of the vertical velocity on the bottom face of the control

volume by the horizontal velocity of the donor control volume will always result in a zero estimate of

TB regardless of the values of ui; j and ui; jÿ1. Therefore the use of the new procedure leads to a

signi®cantly improved estimate of the momentum convection across the horizontal faces of the
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control volume in such situations, as well as in similar situations that occur in connection with ¯ow

over an obstacle and with converging ¯uid fronts.

When both lsi; j and lni; jÿ1 are smaller than dy=2, the left half of the bottom face of the control

volume is not immersed in the ¯uid. Therefore ui; j is used as the donor velocity UDBL regardless of

whether VBL is positive or negative. Since there is a gap between the ¯uid above and below the left

half of the bottom face of the control volume, the velocity ui; jÿ1 is not used as the donor velocity even

if VBL is positive.

The viscous forces associated with the term

n
@2u

@x2
� @

2u

@y2

� �
are treated as external forces that act on the faces of the control volume. Since the effects of these

forces on the rate of increase in x-momentum in the control volume have nothing to do with the mass

¯ow directions, the identi®cation of appropriate donor cells is not necessary. The approximation of

this term used in the new method is identical with the approximation obtained by use of standard

central difference formulae.

4.3. Converging ¯uid fronts

Special care must be exercised in the determination of the momentum ¯ux across a face of the

control volume in connection with converging ¯uid fronts. Consider, for example, the calculation of

the tentative velocity ~ui; j for the situation shown in Figure 7. Assume, furthermore, that the general

motion of the ¯uid in Figure 7 is from left to right. If the ¯uid shown in the left half of Figure 7 were

not present, the velocity uiÿ1; j would represent a surface velocity that is directly related to the

movement of the ¯uid in the control volume associated with ui; j. Then, according to the procedure

described in the preceding subsection, it would be appropriate to use uiÿ1; j as the value of UDL in the

calculation of the rate of x-momentum transfer, TL=dx, across the left face of the control volume.

However, owing to the presence of the ¯uid in the left half of Figure 7, cell (i7 1, j) is not empty and

uiÿ1; j is not a surface velocity. For the situation shown in Figure 7, uiÿ1; j is not directly related to the

motion of the ¯uid in the control volume for ui; j. Consequently, uiÿ1; j is not a physically appropriate

donor velocity for momentum transfer across the left face of the control volume. The best available

velocity information in this situation is provided by ui; j itself. Therefore both UL and UDL are

assigned the value of ui; j in this special situation, resulting in

TL � ULUDL � �ui; j�2:
A very simple test, enabled by the use of micro cells, reveals the existence of a situation of the type

described in this subsection. If uiÿ1; j is not a surface velocity and either lei; j or lwi; j is less than dx=2,

then a gap exists in the ¯uid between uiÿ1; j and ui; j and the special procedure described in this

subsection is used for the calculation of the tentative velocity ~ui; j.

For example, in the calculation of the particular tentative velocity vi�2; jÿ1 in Figure 6 an estimate is

required of the y-momentum ¯ux across the top face of the control volume. Since cell (i� 2, j� 1) is

not empty, vi�2; j is not a surface velocity. Since, in addition, lni�2; j � 0, the procedure of thi

subsection applies and TT is estimated as

TT � VTVDT � �vi�2; jÿ1�2:
The ability afforded by the use of micro cells to ef®ciently identify such situations associated with

converging ¯uid fronts is the key to the development of the new procedures.
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4.4. Assignment

Even though tentative values are not calculated by use of the simpli®ed Navier±Stokes equations

for velocities between ¯uid cells if the velocities are located outside the ¯uid, it is necessary for a

value to be assigned if the velocity in question is associated with a cell in which the pressure will be

calculated. This assignment is necessary so that an incompressibility deviation D can be calculated

for the cell in question.

The velocity vi; jÿ1 in Figure 6 is a velocity that is in this category. First, it is a velocity that is

located on a face shared by a full cell and a surface cell. Second, it also is located outside the ¯uid.

Consequently, as stated in Section 4.1, a tentative value is not calculated. Third, since cell (i, j7 1) is

a cell in which pressure will be calculated, a value for the incompressibility deviation Di; jÿ1 is

required. Therefore, even though it was not appropriate to calculate a tentative value for vi; jÿ1 by use

of the modi®ed Navier±Stokes equations because it is outside the ¯uid, it is necessary to make use of

the best available information to assign a tentative value to vi; jÿ1 for use in the calculation of Di; jÿ1.

The new procedure for the assignment of a tentative value to vi; jÿ1 is discussed in the following.

Each discrete velocity has, in general, four neighbours of the same type. The neighbours to the

east, south, west and north of vi; jÿ1 are vi�1; jÿ1, vi; jÿ2, viÿ1; jÿ1 and vi; j respectively. To determine

whether or not one of these neighbour velocities is appropriate for use in the assignment of vi; jÿ1, two

questions must be answered. First, is the neighbour velocity in question a ¯uid velocity that has been

calculated by use of the simpli®ed Navier±Stokes equations? If the answer is no, the neighbour

velocity is not given any further consideration. If the answer to the ®rst question is yes, the second

question must be answered. Is there a ¯uid path that connects the control volume associated with the

neighbour velocity to the control volume associated with vi; jÿ1? If the answer to this second question

is no, the neighbour velocity is not physically relevant for use in the assignment of a value to vi; jÿ1. If

the answer to the second question is yes, the neighbour velocity under consideration is relevant and

will be used in the assignment of vi; jÿ1. The same two questions must be asked in connection with

each of the four neighbours of vi; jÿ1. Finally, the value assigned to ~vi; jÿ1 is the average of the

neighbour velocities that have been determined to be relevant.

Micro cells play a central role in the determination of the answer to question two referred to above.

The three neighbour velocities south, west and north of vi; jÿ1 all are ¯uid velocities, while the

neighbour velocity east of vi; jÿ1 is not. Consequently, question two is only asked in connection with

the neighbour velocities vi; jÿ2, viÿ1; jÿ1 and vi; j. To determine whether the ¯uid in the control volume

associated with vi; jÿ2 is connected with that in the control volume of vi; jÿ1, the value of the leg length

lni; jÿ1 is checked. If lni, j7 1> 0, then the ¯uid in the two control volumes is connected, and vi, j7 2 is

a relevant velocity. Since lni, j71� dy=3 for the situation shown in Figure 6, vi; jÿ2 is a relevant

velocity. To determine whether the ¯uid in the control volume associated with viÿ1; jÿ1 is connected

with that in the control volume of vi; jÿ1, it is necessary to check both of the leg lengths leiÿ1; j and

leiÿ1; jÿ1. If either of these leg lengths is greater than dx=2, then viÿ1; jÿ1 is a relevant velocity. For the

speci®c case shown in Figure 6, leiÿ1; j � 2dx=3 and leiÿ1; jÿ1 � dx, so viÿ1; jÿ1 also is a relevant

Figure 7. Converging ¯uid fronts
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velocity. Finally, to determine the relevance of vi; j, it is necessary to check the leg length lsi; j. Since

lsi; j � 0, there is a gap in the ¯uid between the control volumes associated with vi; j and vi; jÿ1.

Consequently, vi; j is irrelevant and the value assigned to ~vi; jÿ1 is

~vi; jÿ1 �
~vi; jÿ2 � ~viÿ1; jÿ1

2
:

4.5. Tentative surface velocities

After all the tentative internal velocities have been determined, the tentative surface velocities must

be determined. Tentative surface velocities are required for the assignment of new ¯uid cell

velocities, for the estimation of impact pressure boundary conditions and for the computation of the

incompressibility deviation D for each surface cell in which the pressure will be computed.

As discussed in Sections 4.2 and 4.3, tentative internal velocities are calculated in the new method

by carefully approximating the momentum ¯ux across the faces of the appropriate control volume.

Momentum ¯ux approximations are not used in the new method, however, to determine tentative

surface velocities. Tentative surface velocities also are not computed by use of the continuity

equation for each surface cell as in previous methods. Instead, tentative surface velocities are

determined by making use of the best available neighbouring acceleration information. As a result,

the incompressibility deviation D in a surface cell is not necessarily equal to zero, in contrast with

previous methods. This has an important consequence in a surface cell whose centre micro cell is full.

The pressure at the centre of a surface cell whose centre micro cell is full is calculated by use of the

pressure Poisson equation. Cell (i� 1, j7 1) in Figure 6 is an example of a surface macro cell whose

centre micro cell is full. Consequently, even though cell (i� 1, j7 1) is a surface cell, the pressure

pi�1; jÿ1 is calculated by use of the pressure Poisson equation. Prior to the calculation of pi�1; jÿ1 the

surface velocity vi�1; jÿ1 is assigned and the incompressibility deviation Di�1; jÿ1 is computed. The

outcome is that an appropriate pressure pi�1; jÿ1 is calculated. This pressure later is used in the

calculation of ®nal internal velocities. Only after the ®nal internal velocities have been adjusted for

the effects of pressure to insure that continuity is satis®ed in the full cells are the ®nal surface

velocities computed to insure that continuity is satis®ed in the surface cells as well. Micro cells

enable the identi®cation of a surface cell of this type, the application of the free surface pressure

boundary condition at a point or points near the free surface within the cell and the ef®cient and

accurate calculation of the pressure at the centre of the surface cell.

There is a fundamental difference between the approach used in the new method and that used in

previous methods. When, as in previous methods, the continuity equation is used to compute a

tentative surface velocity and the pressure in the surface cell is set equal to zero or to some other

constant prior to the solution of the pressure Poisson equation, the effects of pressure in the surface

cell are expressly being taken into account. In general, however, continuity is not satis®ed in the full

cells by the tentative internal velocities and the explicit purpose of the determination of the pressure

®eld and the subsequent calculation of the ®nal velocities is to satisfy continuity and take into account

the effects of pressure, which were not taken into account in the determination of the tentative

internal velocities. As a result, there is an inconsistency in previous methods between the way in

which pressure and continuity are treated in the surface cells as opposed to the full cells. In a surface

cell, pressure is taken into account and the continuity equation is satis®ed prior to the calculation of

the pressure ®eld, while in the full cells, pressure effects are not taken into account and the continuity

equation is not satis®ed until after the pressure ®eld has been calculated. In the new method, however,

in all cells, both surface and full, pressure effects are not taken into account and the continuity

equation is not satis®ed until after the determination of the pressure ®eld.
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The basic features of the new method for the determination of a tentative surface velocity such as

~ui; j are that the tentative surface acceleration @~ui; j=@t is ®rst assigned a value, followed by the

calculation of ~ui; j according to

~ui; j � ui; j � dt
@~ui; j

@t
: �9�

If ui; j is a surface velocity, then either cell (i, j) or cell (i� 1, j) must be an empty cell. If cell (i, j)

is an empty cell and cell (i� 1, j) is a surface cell, then the acceleration @~ui�1; j=@t is the most

appropriate information for use in estimating the tentative surface velocity ~ui; j. Therefore

@~ui; j

@t
� @~ui�1; j

@t
:

That is, the change in the surface velocity ui; j as a result of the inertial, viscous and gravitational

forces is estimated to be the same as the change in ui�1; j, the closest ¯uid velocity. The tentative

surface velocity ~ui; j is then calculated by use of (9).

If, on the other hand, cell (i� 1, j) is an empty cell and cell (i, j) is a surface cell, as is the case in

Figure 6, then the acceleration @~uiÿ1; j=@t is the most appropriate information for use in estimating the

tentative surface velocity ~ui; j, so that

@~ui; j

@t
� @~uiÿ1; j

@t
:

It is possible that both cell (i7 1, j) and cell (i� 1, j) are empty cells. This will be true when there

is a thin strip of ¯uid extending vertically through cell (i, j). In this case there is no neighbouring

acceleration that is calculated by use of the Navier±Stokes equation. The only acceleration

information that is available is the acceleration due to gravity. Therefore the time rate of change in

~ui; j that is due to effects other than pressure is simply approximated in this case according to

@~ui; j

@t
� gx:

The new tentative surface velocity assignment method is physically meaningful, logically simple

and computationally ef®cient. Most importantly, it makes possible the use of a consistent method to

compute the pressure ®eld in each macro cell whose centre micro cell is full.

The method used for the determination of tentative surface velocities affects the changes that occur

in both the pressure and velocity ®elds during any time increment in any free surface ¯uid ¯ow

problem. For certain time increments the difference between the use of different methods for the

determination of tentative surface velocities can be very dramatic. If, for example, impact occurs

during the time increment under consideration, the new method enables the determination of the

pressure pulse associated with the impact and of its effects, whereas the use of a method in which the

continuity equation is satis®ed and the pressure is assigned in a surface cell prior to the solution of the

pressure Poisson equation precludes the possibility either of determining or of taking into account the

pressure pulse associated with the impact.

5. TENTATIVE NEW FLUID CELL INTERNAL VELOCITIES

New ¯uid cells are created during a computational cycle by the movement of markers into cells that

did not contain ¯uid at the start of the cycle. As a result, a discrete velocity on the face of such a cell

can suddenly become an internal velocity and no velocity history is associated with this new velocity.

The physical motivation for the new procedures to assign a value to a new ¯uid cell internal velocity
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is the search for the value that provides the best representation of the momentum history of the ¯uid

that has entered the cell.

The velocity normal to each face of a new ¯uid cell will either be a surface velocity, if the face is

shared with an empty cell, or a new internal velocity, if the face is shared with a surface or full cell.

All four velocities associated with each new ¯uid cell represent ®eld variables in the present

computational cycle. A velocity associated with the face of a new ¯uid cell may have been a surface

velocity with a speci®c value at the start of the computational cycle. If, however, the face of the new

¯uid cell was shared with another empty cell prior to marker movement, the velocity associated with

the face was an unknown quantity at the start of the computational cycle. In this section, new

procedures for the assignment of tentative values to new ¯uid cell internal velocities are presented.

Micro cells play an essential role in the new procedures.

The free surface locations before and after marker movement are sketched in Figure 8 for an

example problem. Before marker movement, cells (i, j) and (i� 1, j) both are empty cells, while after

marker movement, these same two cells both are new surface cells. Attention will be focused on the

four velocities associated with new ¯uid cell (i, j). After marker movement, ~vi; jÿ1 is a new surface

velocity, while ~uiÿ1; j, ~ui; j and ~vi; j all are new internal velocities that must be assigned tentative

values. Before marker movement, cell (i, j) was an empty cell that had two surface and two empty

neighbours. Therefore at t� t0 the velocities vi; j and uiÿ1; j are surface velocities that are known,

while the velocities on the other two faces are unknown. The tentative values of the new internal

velocities ~vi; j and ~uiÿ1; j are simply assigned the values of the surface velocities at the same locations

at the start of the computational cycle. However, since no value of ui; j is available at the start of the

computational cycle, another procedure must be devised to assign a physically meaningful tentative

value to the new internal velocity ~ui; j.

Three different procedures for the assignment of new ¯uid cell internal velocities have been

developed for marker and cell methods. In the MAC method the initial value of any new internal

velocity is taken to be the average of the appropriate components of the velocities of the markers that

have entered the new ¯uid cell. Therefore the values assigned to new internal velocities in the MAC

method depend on the direction of cell sweeping. In the simpli®ed marker and cell (SMAC) method8

a new internal velocity is initialized immediately after the ®rst marker enters the cell. The value

assigned to the new internal velocity is obtained from the cell from which the ®rst marker came. As a

consequence, the values assigned to new internal velocities in the SMAC method depend on the order

of marker sequencing. In Reference 5 it is pointed out that both the MAC and SMAC procedures for

the assignment of new internal velocities arti®cially introduce asymmetry and an alternative

procedure is introduced.

Figure 8. New ¯uid cells (i, j) and (i� 1, j)
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The procedure of Reference 5 is ef®cient and, in contrast with the MAC and SMAC procedures, is

unconditionally independent of cell and marker sequencing and does not arti®cally introduce

asymmetry. In the procedure of Reference 5 the two closest neighbour velocities of the new internal

velocity are examined. If only one of them is a surface or internal velocity, the new internal velocity

is assigned the value of this neighbour velocity. If both of them are surface or internal velocities, the

new internal velocity is assigned the average of the two closest neighbour velocities. This latter

condition will occur when ¯uid fronts converge. Although there is no way to tell by use of standard

®nite difference cells alone, it is possible that only one of the two neighbour velocities is related to

the momentum ¯ux into the cells associated with the new internal velocity. The use of micro cells

allows one to distinguish between the two neighbour velocities in such a situation. In the following a

new procedure is presented that improves the accuracy of the assignment of new internal velocities in

situations that occur when ¯uid fronts converge.

In the new procedure the momentum ¯ux is taken into account by checking the condition of certain

micro cells. In Figure 9, cells (i, j) and (i� 1, j) are new ¯uid cells and ~ui; j is a new internal velocity.

Since cells (i, j) and (i� 1, j) were empty at the start of the cycle and the time increment is always

chosen such that ¯uid does not move in either the x-or the y-direction in one time step a distance

larger than the dimension of a micro celll, only the shaded micro cells in cells (i, j) and (i� 1, j) can

contain ¯uid. By examining these shaded micro cells and the local velocity ®eld, one can determine

the origin of the ¯uid that has entered cells (i, j) and (i� 1, j).

Eight neighbour velocities of ~ui; j, namely ~ui�1; j, ~ui; j�1, ~uiÿ1; j, ~ui; jÿ1, ~ui�1; j�1, ~uiÿ1; j�1, ~uiÿ1; jÿ1 and

~ui�1; jÿ1, are shown in Figure 9. The problem is to identify each neighbour velocity that is associated

with the momentum ¯ux into the cells associated with ~ui; j and therefore is physically relevant to the

assignment of the tentative new internal velocity ~ui; j. For this example the micro cells in the cells

(i, j) and (i� 1, j) are numbered from left to right and bottom to top, starting with micro cell (i1, j1) in

the lower left corner of cell (i, j) and ending with micro cell (i6, j3) in the top right corner of cell

(i� 1, j). The assignment of ~ui; j is accomplished by the following three hierarchical steps.

Step 1

If any of the four micro cells (i2, j1), (i3, j1), (i4, j1) and (i5, j1) are surface cells, then ¯uid must

have entered the control volume for ~ui; j from below, from one or both of cells (i, j7 1) and

(i� 1, j7 1). Therefore ~ui; jÿ1 was an internal velocity at t� t0 and it is the appropriate x-direction

donor velocity for the momentum ¯ux across the bottom face of the control volume for ~ui; j. Similarly,

if any of the four micro cells (i2, j3), (i3, j3), (i4, j3) and (i5, j3) are surface cells, then ¯uid must have

Figure 9. Assignment of tentative value to new ¯uid cell internal velocity ~ui;j
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entered the control volume for ~ui; j from above. If so, then ~ui; j�1 was an internal velocity at t� t0 and

it is the appropriate x-direction donor velocity for the momentum ¯ux across the top face of the

control volume for ~ui; j.

If ¯uid has entered the control volume for ~ui; j, both from below and above, then

~ui; j � �~ui; jÿ1 � ~ui; j�1�=2. If ¯uid has entered only from below or above, then either ~ui; j � ~ui; jÿ1 or

~ui; j � ~ui; j�1. If all eight macro cells considered in Step 1 are empty, then Step 2 is carried out.

Step 2

If micro cell (i1, j2) is a surface cell, then ¯uid must have entered it from cell (i7 1, j) and ~uiÿ1; j is

the appropriate x-direction donor velocity for the momentum ¯ux into cell (i, j). Similarly, if micro

cell (i6, j2) is a surface cell, then ~ui�1; j is the appropriate x-direction donor velocity for the

momentum ¯ux into cell (i� 1, j).

If micro cells (i1, j2) and (i6, j2) are both surface micro cells, then ¯uid is approaching the control

volume for ~ui; j from both the left and the right and the best estimate of the tentative new internal

velocity is ~ui; j � �~uiÿ1; j � ~ui�1; j�=2. If only one of micro cells (i1, j2) and (i6, j2) is a surface cell, then

either ~ui; j � ~uiÿ1; j or ~ui; j � ~ui�1; j. If neither micro cell (i1, j2) nor micro cell (i6, j2) is a surface cell,

then Step 3 is carried out.

Step 3

The only remaining possibility is that ¯uid has entered at least one of micro cells (i1, j1) and (i1, j3)

in cell (i, j) and at least one of micro cells (i6, j1) and (i6, j3) in cell (i� 1, j).

If micro cell (i1, j1) is a surface cell, then ¯uid may have entered it from cell (i, j). If so, then cell

(i, j) must have contained ¯uid at the start of the cycle and ~uiÿ1; j is the most appropriate x-direction

donor velocity for the momentum ¯ux into micro cell (i1, j1). Therefore, if cell (i7 1, j) was a

surface cell at the start of the cycle, then ~uiÿ1; j is used in the assignment of the tentative new internal

velocity ~ui; j. On the other hand, if cell (i7 1, j) was empty at the start of the cycle, then one or both

of cells (i7 1, j7 1) and (i, j7 1) must have contained ¯uid at the start of the cycle. Otherwise,

¯uid could not have entered micro cell (i1, j1). In this case, regardless of whether one or both of cells

(i7 1, j7 1) and (i, j7 1) contained ¯uid, ~uiÿ1; jÿ1 is the most appropriate x-direction donor

velocity for the momentum ¯ux into micro cell (i1, j1).

In a similar manner the most appropriate x-direction donor velocity is determined for the

momentum ¯ux into each of the other three micro cells (i1, j3), (i6, j1) and (i6, j3) that is a surface cell.

Finally, the most physically meaningful estimate of the tentative new internal velocity ~ui; j is the

average value of the x-direction donor velocities associated with all four micro cells (i1, j1), (i1, j3),

(i6, j1) and (i6, j3) that contain ¯uid.

For example, if micro cells (i1, j1) and (i6, j3) are the only surface cells and ¯uid enters micro cell

(i1, j1) from below and micro cell (i6, j3) from above (cells (i7 1, j) and (i� 2, j) contained no ¯uid

at the start of the cycle), then ~ui; j � �~uiÿ1; jÿ1 � ~ui�1; j�1�=2.

The order of Steps 1±3 is important. Suppose, for example, that there is ¯uid only in micro cells

(i3, j1) and (i1, j2). Cell (i3, j1) is located inside the conntrol volume for ~ui; j, while cell (i1, j2) is

located just outside the control volume. Therefore ~ui; jÿ1, the appropriate x-direction donor velocity

for micro cell (i3, j1), is a more physically meaningful estimate for the tentative new internal velocity

~ui; j than ~uiÿ1; j, the appropriate x-direction donor velocity for micro cell (i1, j2). In the new procedure,

~ui; j would be assigned the value of ~ui; jÿ1 in Step 1 above. If Steps 1 and 2 were reversed, ~ui; j would

instead be incorrectly assigned the value of ~uiÿ1; j.
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6. THE PRESSURE FIELD

The new pressure equation used in the SMMC method is derived starting from the Navier±Stokes

equation written in terms of the ®nal velocities, the tentative velocities and the pressure:

@u

@t
� @~u

@t
ÿ 1

r
@p

@x
;

@v

@t
� @~v
@t
ÿ 1

r
@p

@y
: �10�

Integrating equation (10) with respect to time from t to t� dt leads to

u � ~uÿ dt

r
@p

@x
; v � ~vÿ dt

r
@p

@y
: �11�

Then the procedure described in the development of the pressure potential equation recently

presented in Reference 9 is followed. Namely, equation (11) are written in second-order central

difference form for a generic cell and then substituted into the second-order central difference form of

the continuity equation for the control volume associated with that cell. The result is the pressure

Poisson equation

Cpÿ 1

dx le
peÿ 1

dx ln
pnÿ 1

dx lw
pwÿ 1

dx ls
ps � ÿ r

dt
D �12�

for the discrete pressure p at the centre of cell (i, j), where

C � 1

dx

1

le
� 1

lw

� �
� 1

dy

1

ln
� 1

ls

� �
; D � ~u�i; j� ÿ ~u�iÿ 1; j�

dx
� ~v�i; j� ÿ ~v�i; j ÿ 1�

dy
;

pe, pn, pw and ps represent the pressures at points e, n, w and s respectively and le, ln, lw and ls

represent the leg lengths for cell (i, j). Points e, w, n and s are points at which either the pressure is

calculated or a pressure boundary condition is applied. The preconditioned conjugate gradient

method is used to solve equation (12). Iterations continue until the change in the value of any pressure

is less than a user-speci®ed convergence criterion.

In previous methods the pressure boundary conditions, as originally suggested in the MAC method,

are split into two parts that are applied in different stages of the computational cycle. Previous

treatments of certain free surface velocity boundary conditions have a destabilizing in¯uence on the

numerical solution. In previous methods those parts of the pressure boundary conditions related to the

viscous normal stresses and the applied pressure at the free surfaces, along with an arti®cially high

value of the viscosity, are applied as pseudopressures during the calculation of the tentative

velocities, which has the effect of stabilizing the solution. The other pressure boundary conditions,

together with the assumption of zero pressuree at the free surfaces, are then applied in conjunction

with the calculation of the pressure potential ®eld. Treatments of free surface velocity boundary

conditions which eliminate the destabilizing in¯uences of previous treatments were presented in

Reference 5 and are incorporated in the new method of this paper. Consequently, in the SMMC

method it is possible to take into account all the pressure boundary conditions during the calculation

of the pressure ®eld, including the impact pressure boundary conditions introduced in Reference 9.

No pressure boundary condition nor any other pressure value is taken into account during the

calculation of the tentative velocity ®eld. As a result, the ®nal pressure ®eld, including all the pressure

boundary conditions, is associated with the tentative velocity ®eld calculated in the current

computational cycle. In previous methods, however, some of the pressure boundary conditions are

associated with the ®nal velocity ®eld of the previous cycle, while others are associated with the

tentative velocity ®eld of the current cycle.

In the MAC method, three symbols f, y and c are used that are related to pressure. The symbol f
is referred to as the `true pressure' and is equal to the pressure divided by the density, the symbol y is
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referred to as the `pseudopressure' and c is simply referred to as a `potential'. The relationship

between f, y and c is

f � y� c=dt:

The pseudopressure y is based on the ®nal velocity ®eld of the previous cycle, while the potential c is

based on the tentative velocity ®eld of the current cycle.

In the SMMC method the pressure is designated by p, no pseudopressure or potential is referenced

at all, all pressure boundary conditions are applied during the solution of the new pressure equation

and the pressure and velocities all are associated with the same instant of time.

7. FINAL VELOCITIES

After the pressure ®eld has been calculated by use of (12), the ®nal velocities are determined. The use

of micro cells enables the recognition and accommodation of four essentially different cases for the

determination of ®nal internal velocity components. For the cases illustrated in Figure 10, u(i, j) is the

®nal velocity to be determined. Corresponding to each case shown in Figure 10, there also is a case

for which v(i, j) is the ®nal velocity to be determined.

For the ®rst case shown in Figure 10(a), u(i, j) is immersed in the ¯uid and a free surface exists in

the cell to the right (east) of cell (i, j). In this case, le(i, j) is larger than dx=2 and the ®nal velocity

u(i, j) is computed by use of

u�i; j� � ~u�i; j� ÿ dt

r
pe�i; j� ÿ p�i; j�

le�i; j� : �13�

Figure 10. Final velocities
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Point e, the centre of the surface micro cell to the east of u(i, j), represents a point on the free surface,

pe(i, j) is the pressure on the free surface and le(i, j) is the distance between the centre of cell (i, j)

and point e.

In the second case shown in Figure 10(b), u(i, j) is an internal velocity associated with a face

between two surface cells, but it actually is located outside the ¯uid. In this case neither le(i, j) nor

lw(i� 1, j) is larger than dx=2, no pressure gradient is available for the adjustment of ~u�i; j� and the

®nal velocity u(i, j) is simply assigned the value of u(i, j7 1), the closest appropriate neighbour

velocity.

For the third case shown in Figure 10(c), the velocity u(i, j), the centre of cell (i, j) and the centre

of cell (i� 1, j) are all within the ¯uid. Equation (14) applies for this case, which represents the most

common case for an internal velocity:

u�i; j� � ~u�i; j� ÿ dt

r
p�i� 1; j� ÿ p�i; j�

dx
: �14�

The fourth case shown in Figure 10(d) occurs when free surfaces converge. The ®nal values

assigned to the velocities u(i7 1, j) and u(i, j) shown in Figure 10(d) are related to the motions of

both of the two converging ¯uid fronts. The velocity u(i7 1, j) is assigned the average value of

u(i7 1, j� 1) and u(i7 1, j7 1), while u(i, j) is assigned the average value of u(i, j� 1) and

u(i, j7 1). If the ¯uid fronts converge during the next computational cycle, these values will be used

for the calculation of the incompressibility deviation D(i, j) and the subsequent calculation of p(i, j).

Otherwise, these values of u(i7 1, j) and u(i, j) will never be used at all. When values of u(i7 1, j)

and u(i, j) are needed in the next computational cycle for moving surface markers or calculating

tentative velocities, physically appropriate values are determined and used as needed but are not

stored.

After all the ®nal internal velocities have been determined, the required ®nal velocity boundary

conditions must be determined. Since outside tangential velocities are not stored in the SMMC

method, the ®nal surface velocities are the only ®nal velocity boundary conditions that must be

determined. Except for the special case of converging ¯uid fronts illustrated by the surface velocity

u(i, j) shown in Figure 10(d) and discussed above, the ®nal surface velocity assignment procedures

presented in Reference 5 are adopted in the SMMC method.

8. CONVERGING FLUID FRONTS AND MULTIVALUED VELOCITIES

Since spatial derivatives are approximated by second-order central differences and an explicit method

is employed to evolve the solution, a marker and cell method has second-order accuracy in space and

®rst-order accuracy in time. The cell dimensions dx and dy are the measures of spatial resolution and

the time increment dt is the measure of temporal resolution.

In previous methods the spatial resolution in the vicinity of converging ¯uid fronts is not equal to

the cell spacing and can be as coarse as twice the cell spacing. Consequently, the spatial resolution

and accuracy of previous methods are signi®cantly less in the neighbourhood of converging ¯uid

fronts than elsewhere in the computational domain.

In the SMMC method there is no degradation of spatial resolution or loss of spatial accuracy in

connection with converging ¯uid fronts. This improvement is enabled by use of micro cells, as

illustrated in Figure 11. Two ¯uid fronts separated by slightly less than twice the cell spacing are

shown in Figure 11(a). In previous methods, in spite of the fact that the ¯uid fronts are separated by

almost twice the cell spacing, both of the cells in the centre of Figure 11(a) are ¯agged as full cells,

since neither of them has an empty neighbour. The same situation is depicted in Figure 11(b), except

that micro cells have been added, enabling the ready identi®cation of the two distinct ¯uid fronts and
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of the empty region between them. With micro cells the gap between the two fronts is identi®able

until fewer than two micro cells separate them, as shown in Figure 11(c). Consequently, in the

SMMC method the spatial resolution is not degraded in connection with converging ¯uid fronts and,

in conjunction with the use of multivalued velocities, second-order accuracy in space is maintained.

In the new method the physical purpose for which the velocity is required is taken into account in

order to assign appropriate values to velocities between converging ¯uid fronts.

For marker movement and the calculation of tentative velocities the velocities u(i7 1, j) and

u(i, j) of the typical example of converging ¯uid fronts shown in Figure 10(d) should be assigned

values that are related to the motion of the upper ¯uid front when that part of the ¯uid is under

consideration. On the other hand, when the lower part of the ¯uid is under consideration, the same

two velocities instead should be assigned values that are related to the motion of the lower ¯uid front.

Essentially, one ¯uid front should be ignored when the motion of the other is under consideration.

This is a crucial point in the treatment of converging ¯uid fronts. For example, if, as in previous

methods, no special consideration is given to the typical situation involving converging ¯uid fronts

that is illustrated in Figure 10(d), the velocity u(i, j) is simply regarded as the single surface velocity

associated with a surface cell that has only one empty neighbour. Then the value of u(i, j) is

computed by use of the discrete continuity equation associated with cell (i, j). As a consequence, the

velocities u(i7 1, j), v(i, j) and v�i; j ÿ 1� all directly in¯uence the value of u�i; j� and D(i, j) is

equal to zero. Since v(i, j) is associated with the upper ¯uid front, while v(i, j7 1) is associated with

the lower ¯uid front, this procedure allows each ¯uid front to begin to affect the other before they

actually converge. In addition, when the fronts converge, it is not possible to compute the increase in

pressure in cell (i, j), because the incompressibility deviation D(i, j) in cell (i, j) is equal to zero.

In the new method, velocities such as u(i7 1, j) and u(i, j) in Figure 10(d) are assigned values in

the new method for ®ve different purposes during the current computational cycle. They are assigned

values (i) for movement of markers associated with the upper ¯uid front, (ii) for calculation of

tentative velocities associated with the upper ¯uid front, (iii) for movement of markers associated

with the lower ¯uid front, (iv) for calculation of tentative velocities associated with the lower ¯uid

front and (v) for calculation of the incompressibility deviation and the pressure in cell (i, j) in case the

fronts converge during the current cycle.

When the upper part of the ¯uid is under consideration and the lower ¯uid front in Figure 10(d) is

temporarily ignored, cell (i7 1, j) appears to be a surface cell with one empty neighbour below and

cell (i, j) appears to be a surface cell with two adjacent empty neighbours below and to the right.

Therefore, for movement of the upper ¯uid front, u(i7 1, j) is recognized as an internal velocity of

Figure 12. Experimental apparatus
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the type shown in Figure 10(b) and therefore is assigned the value of u(i7 1, j� 1). To satisfy

continuity in cell (i, j), the surface velocity u(i, j) then is assigned the value of u(i7 1, j). For the

calculation of tentative internal velocities associated with the upper part of the ¯uid, u(i7 1, j) again

is assigned the value of u(i7 1, j� 1), but u(i, j) instead is assigned the value of u(i, j� 1), the

closest appropriate ¯uid velocity.

On the other hand, when the lower part of the ¯uid is under consideration and the upper ¯uid front

is temporarily ignored, cell (i7 1, j) appears to be a surface cell with one empty neighbour above

and cell (i, j) appears to be a surface cell with two adjacent empty neighbours above and to the right.

As a consequence, u�iÿ 1; j� and u(i, j) both are assigned the value of u(i7 1, j7 1) for movement

of the lower ¯uid front. For calculation of tentative internal velocities associated with the lower part

of the ¯uid, u�iÿ 1; j� is also assigned the value of u(i7 1, j7 1), while u(i, j) instead is assigned

the value of u(i, j7 1).

Finally, for the calculation of the incompressibility deviation D(i, j) and the subsequent calculation

of the pressure p(i, j) in case the fronts converge, u(i7 1, j) and u(i, j) are assigned values that are

related to the motions of both of the two converging ¯uid fronts; u(i7 1, j) is assigned the average

value of u�iÿ 1; j � 1� and u(i7 1, j7 1), while u(i, j) is assigned the average value of u(i, j� 1)

and u(i, j7 1). These values of u(i7 1, j) and u(i, j) will not be used at all unless the ¯uid fronts

converge.

In summary, for the situation shown in Figure 10(d), the velocity u(i7 1, j) is assigned the value

of u(i7 1, j� 1) for purposes (i) and (ii), the value of u(i7 1, j7 1) for purposes (iii) and (iv) and

the average value of u(i7 1, j� 1) and u(i7 1, j7 1) for purpose (v). Therefore three distinct

values are actually assigned to u(i7 1, j) during the current cycle. For u(i, j), on the other hand, ®ve

different values are assigned during the current cycle. For purpose (i), u(i, j)�
u�iÿ 1; j� � u�iÿ 1; j � 1�; for purpose (ii), u�i; j� � u(i, j� 1); for purpose (iii),

u(i, j)� u�iÿ 1; j� � u�iÿ 1; j ÿ 1�; for purpose (iv), u(i, j)� u(i, j7 1); and for purpose (v), u(i, j)

is assigned the average value of u(i, j� 1) and u(i, j7 1).

The ®rst advantage of the use of multivalued velocities for the special case of converging ¯uid

fronts is that the velocities used at different points in the computational cycle are physically

appropriate for the purpose under consideration and do not incorrectly allow the fronts to begin to

affect each other as they approach each other and before they actually converge. The second, equally

important, advantage of the use of multivalued velocities is that values that capture the motions of

both ¯uid fronts are available in case the fronts actually converge. These values then allow the

calculation of an appropriate non-zero value of D(i, j), which enables the evaluation of the increase in

pressure in cell (i, j) that occurs as a result of the convergence of the two fronts.

9. EXPERIMENTAL VALIDATION

To demonstrate both the capabilities and the validity of the SMMC method, simulation and

experimental results are compared for water sloshing in a tank. No previous method is capable of

simulating free surface ¯uid ¯ow that includes impact and converging ¯uid fronts. To obtain the

experimental results, a partially ®lled tank with clear glass walls is placed on a platform with wheels.

The tank is caused to move horizontally back and forth in a periodic fashion by use of a constant

speed electric motor, a crank and a connecting rod between the crank and the platform. As a result of

the motion of the tank, the water, which initially is at rest, sloshes back and forth inside the tank. A

high-speed video camera is used to capture, at 500 frames per second, the primarily two-dimensional

motion of the ¯uid in the tank. A sketch of the experimental apparatus is found in Figure 12.

Direct comparisons between simulation and experimental results at 16 different times during the

®rst two cycles of the tank's motion can be made by examination of Figure 13. For each of the 16
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times a pair of ®gures is displayed in Figure 13. One of the two ®gures in each pair depicts the

SMMC simulation result, with the shape and location of the free surface at the instant in question

clearly identi®ed by surface markers. The other ®gure in each pair is a video image of the experiment

at the same instant. In the video image the shape and location of the free surface are visible through

the transparent wall of the tank. Since the camera is stationary while the tank moves back and forth,

the tank does not occupy exactly the same position in the camera's ®eld of view at each of the 16

times. The effects of these differences in position are inconsequential, since the tank only moves

Figure 12. Experimental apparatus

Figure 13. SMMC simulation and experimental results for water sloshing in a tank
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15 cm to either side of its central location and the camera lens is located 9 m from the tank. The most

signi®cant effect occurs when the tank is in an extreme position and a thin layer of ¯uid has run up its

end wall. In this case the thickness of the layer extending across the end wall is exaggerated to some

extent as a result of the fact that the thin layer of ¯uid is to one side of the line of sight of the camera.

The most violent sloshing occurs during the ®rst two cycles of the back and forth motion of the

tank. General inspection of Figures 13(a)±13(p) leads one to conclude that the simulated free surface

shapes and locations are in good agreement with their experimental counterparts throughout these

®rst two complete cycles of the tank's motion. The initial depth of the water in the tank is 4 cm. The

period of the motion of the tank is 1�70 s and the times associated with the pairs of ®gures range from

0�05 to 3�45 s. The 40 cm620 cm computational domain was divided into 160680 macro cells,

each 0�25 cm60�25 cm, and nine micro cells were used per macro cell (N� 3). A variable time step

is used in the SMMC simulation and 3741 computational cycles were completed in reaching the real

time of 3�45 s. The simulation was performed on a DEC 5000=260 workstation and required 10,677 s

of computer time. In the succeeding paragraphs a brief discussion of the details of the sloshing

motion and of the relationship between simulated and experimental results is presented.

In Figure 13(a), just 0�05 s after the tank begins to move to the right, the surface of the ¯uid is still

nearly horizontal, although a slight build-up of ¯uid near the left end of the tank is visible. At 0�55 s

the build-up of ¯uid in the left half of the tank is clearly apparent in Figure 13(b) The ®rst half-cycle

of the tank's motion is completed at 0�85 s, at which time motion to the right ceases and motion to the

Figure 13. (continued )
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left is impending. At 1�10 s, as shown in Figure 13(c), the tank has moved part way back to the left

and ¯uid has accumulated in the right end of the tank. In Figure 13(d) the tank is still moving to the

left and the upper portion of the ¯uid is moving to the left with a speed greater than that of the tank.

The shapes and locations of the simulated and experimental ¯uid fronts are essentially the same in

Figures 13(a)±13(d). Up to this point in time the motion of the ¯uid is relatively smooth, no impact

has occurred and the free surface can be represented as single-valued. Before the end of the ®rst cycle

of the tank's motion, however, the ¯uid impacts the left end of the tank and moves dramatically up

the left tank wall, as shown in Figure 13(e). At 1�70 s the ®rst cycle is completed, leftward motion of

the tank ceases and motion back to the right impends. A breaking wave moving to the right is visible

in Figure 13(g), just 0�05 s after the tank has resumed motion to the right. Even though impact with

the end wall of the tank has occurred and the shape of the free surface is multivalued, the agreement

between simulated and experimental results remains excellent. Between 1�75 and 1�85 s the breaking

wave collapses. Following this convergence of ¯uid fronts, the agreement between simulated and

experimental results is still very good, as shown in Figure 13(h).

A small void is apparent in the simulation results shown in Figure 13(h). Voids also are apparent in

Figures 13(i) and 13(o). These voids are the result of the convergence of ¯uid fronts during wave

breaking in such a manner that empty regions become completely surrounded by ¯uid. The falling

¯uid shown in the breaking wave near the right end of the tank in Figure 13(j) is just about to

converge with the ¯uid below and completely surround a small region that contains no ¯uid. In the

Figure 13. (continued )

THE SMMC METHOD 775

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 749±778 (1997)



simulation such voids eventually close and disappear. In the actual physical occurrence of a breaking

wave, air is temporarily entrapped inside the ¯uid. It is not possible to observe any air entrapment in

the video images of the experiment, because the camera sees through the glass wall and the ¯uid and

cannot display just one isolated two-dimensional vertical slice at some point between the side walls.

Repeated occurrences of impact and of the convergence of ¯uid fronts take place during the

simulation of the ®rst two cycles of the tank's motion. Nevertheless, the results displayed in Figures

13(e)±13(p), all of which are subsequent to one or more occurrences of impact and=or ¯uid front

convergence, continue to exhibit good agreement between the shapes and locations of the simulated

and experimental free surfaces.

10. GRID REFINEMENT STUDY

Four different simulations of the water-sloshing problem considered in the previous section are

compared with each other to demonstrate the convergence of the new method. The macro cell size is

different for each of the four cases. Otherwise, the cases are identical. For Case 1 the computational

domain is divided into only 40620 macro cells, each 1 cm61 cm. The macro cell dimension is

halved for Case 2, halved again for Case 3 and halved still again for Case 4. Therefore there are four

times as many cells in each successive case. The ®nest grid, the one used in Case 4, has 64 times as

many cells as the coarsest grid, the one used in Case 1. The grid spacing for Case 3 is the same as for

Figure 13. (continued )
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the simulation results presented in the previous section; namely, the domain is divided into 160680

cells, each 0�25 cm60�25 cm.

Data for the four cases are presented in Table I, where Ix and Iy represent the numbers of cells in

the x-and the y-direction respectively and dx and dy are the cell dimensions. The last column in Table

I presents the DEC 5000=260 CPU time consumed by each simulation. For each case the simulation

was terminated at t� 1�101 s, the time that corresponds to Figure 13(c).

The simulation results for all four cases are displayed in Figure 14. In the inset in Figure 14 the

entire computational domain is displayed. At this resolution the differences between the four cases

are indiscernible. In order to differentiate between the four cases, the portion of the free surface

enclosed by the small rectangular window in the inset is enlarged and displayed in the large rectangle.

The legends associated with the different curves refer to the numbers of cells in the x-and the y-

direction for the four cases.

It is apparent from close examination of Figure 14 that the solution converges as the grid density is

increased. The difference between Case 1 and Case 4 is greater than that between Case 2 and Case 4,

which itself is greater than the difference between Case 3 and Case 4. In addition, the change in the

solution from one case to the next gets smaller and smaller as the grid density increases. Finally,

comparison of the curves shown in Figure 14 with the experimental result displayed in Figure 13(c)

reveals that the simulation result becomes closer to the experimental result as the grid density

increases. The transition from the lower free surface level on the left to the higher level on the right

becomes steeper as the grid density increases.

It can be concluded that the solution provided by the new method converges as the grid density is

increased and also that it gets closer to the actual experimental result. By use of the new method, even

a coarse mesh with only 40620 cells leads to a reasonably good solution of the free surface ¯ow

problem considered.

Figure 14. Simulation results for sloshing problem at t� 1�101 s by use of four different grid densities

Table I. Data for grid re®nement study

Case Ix Iy dx (cm) dy (cm) CPU time (s)

1 40 20 1�0 1�0 48�3
2 80 40 0�5 0�5 286�7
3 160 80 0�25 0�25 3115�2
4 320 160 0�125 0�125 31009�9
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11. CONCLUSIONS

A new method capable of simulating two-dimensional, incompressible, transient, free surface ¯uid

¯ow problems that include multivalued free surfaces, impact of free surfaces with solid obstacles and

converging ¯uid fronts is presented. The new method is validated by comparison of simulation and

experimental results for water sloshing in a tank. The comparison reveals good agreement between

the shapes and locations of the simulated and experimental free surfaces even after repeated

occurrences of impact of the water with the tank walls and of the convergence of ¯uid fronts as the

water sloshes back and forth in the tank. The convergence of the new method is demonstrated by a

grid re®nement study.

Physically motivated new procedures are introduced for the advection of the free surface as well as

for the calculation of the velocity and pressure ®elds. Although use of these new procedures can have

important consequences in connection with ¯uid-®lled regions, their most signi®cant advantages are

associated with regions near the free surface and, in particular, in connection with the convergence of

¯uid fronts. Two guiding principles for the development of the new procedures are that the most

appropriate available velocity information must be used for any given speci®c purpose and that great

care must be exercised in the development of momentum ¯ux approximations. It is recognized that

for a particular discrete velocity that is associated with the convergence of two ¯uid fronts, as many

as ®ve different values are appropriate for different purposes during a single computational cycle.

The use of surface markers and micro cells enables the identi®cation of special circumstances such as

the convergence of ¯uid fronts, as well as the development of ef®cient procedures for the assignment

of velocities that are appropriate for the circumstances. Surface markers and micro cells also play a

critical role in the development of new, more accurate momentum ¯ux approximations. All the new

procedures combine to produce a robust new method, the surface marker and micro cell (SMMC)

method, that is capable of simulating free surface ¯uid ¯ow that includes impact and converging ¯uid

fronts.
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